Depolarization-induced slow Ca2+ transients stimulate transcription of IL-6 gene in skeletal muscle cells.

نویسندگان

  • Nevenka Juretić
  • Paola García-Huidobro
  • Juan Antonio Iturrieta
  • Enrique Jaimovich
  • Nora Riveros
چکیده

Contracting skeletal muscle produces and releases interleukin-6 (IL-6) in high amounts. Nevertheless, the mechanisms underlying IL-6 expression are not understood. Because inositol-1,4,5-trisphosphate (IP(3))-mediated slow Ca(2+) signals evoked by depolarization of skeletal myotubes appears to play a role in the regulation of gene expression, we examined its involvement on IL-6 transcription. With the use of semiquantitative RT-PCR, we have shown that K(+) depolarization of myotubes induces a transient increase in IL-6 mRNA level, which peaks at 3-4 h and is independent of extracellular Ca(2+). Inhibitors of IP(3)-dependent Ca(2+) signals, like 2-aminoethoxydiphenyl borate (2-APB) and U-73122, decreased activation of IL-6 gene expression as did Ca(2+) signals inhibitor BAPTA-AM, whereas ryanodine, a fast Ca(2+) transient inhibitor, had no effect on IL-6 induction. Depolarization of myotubes transiently transfected with a reporter gene construct, containing 651 bp of IL-6 promoter, induced a twofold increase in promoter activity, which was abolished by either 2-APB or U-73122 and remained unaffected after ryanodine treatment. Site-directed mutagenesis of parental construct allowed us to identify activator protein-1 and NF-kappaB sequences as regulatory elements involved in IL-6 upregulation. Our results provide evidence for involvement of IP(3)-mediated Ca(2+) signals on IL-6 transcription in skeletal muscle cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dihydropyridine Receptors as Voltage Sensors for a Depolarization-evoked, IP3R-mediated, Slow Calcium Signal in Skeletal Muscle Cells

The dihydropyridine receptor (DHPR), normally a voltage-dependent calcium channel, functions in skeletal muscle essentially as a voltage sensor, triggering intracellular calcium release for excitation-contraction coupling. In addition to this fast calcium release, via ryanodine receptor (RYR) channels, depolarization of skeletal myotubes evokes slow calcium waves, unrelated to contraction, that...

متن کامل

Ca2+ transients activate calcineurin/NFATc1 and initiate fast-to-slow transformation in a primary skeletal muscle culture.

The calcineurin-mediated signal transduction via nuclear factor of activated T cells (NFATc1) is involved in upregulating slow myosin heavy chain (MHC) gene expression during fast-to-slow transformation of skeletal muscle cells. This study aims to investigate the Ca2+ signal necessary to activate the calcineurin-NFATc1 cascade in skeletal muscle. Electrostimulation of primary myocytes from rabb...

متن کامل

Muscle early genes regulation Depolarization induced slow calcium transients activate early genes in skeletal muscle cells

The signaling mechanisms by which skeletal muscle electrical activity leads to changes in gene expression remain largely undefined. We have reported that myotubes depolarization induces calcium signals in cytosol and nucleus via inositol 1,4,5-trisphosphate (IP3) and phosphorylation of both ERKs 1/2 and cAMP-response element-binding protein (CREB). We now describe the calcium dependence of P-CR...

متن کامل

Depolarization-induced slow calcium transients activate early genes in skeletal muscle cells.

The signaling mechanisms by which skeletal muscle electrical activity leads to changes in gene expression remain largely undefined. We have reported that myotube depolarization induces calcium signals in the cytosol and nucleus via inositol 1,4,5-trisphosphate (IP(3)) and phosphorylation of both ERK1/2 and cAMP-response element-binding protein (CREB). We now describe the calcium dependence of P...

متن کامل

Clustering of Ca2+ transients in interstitial cells of Cajal defines slow wave duration

Interstitial cells of Cajal (ICC) in the myenteric plexus region (ICC-MY) of the small intestine are pacemakers that generate rhythmic depolarizations known as slow waves. Slow waves depend on activation of Ca2+-activated Cl- channels (ANO1) in ICC, propagate actively within networks of ICC-MY, and conduct to smooth muscle cells where they generate action potentials and phasic contractions. Thu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 290 5  شماره 

صفحات  -

تاریخ انتشار 2006